Opechowskis theorem and commutator groups

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1986 J. Phys. A: Math. Gen. 191517
(http://iopscience.iop.org/0305-4470/19/9/021)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 31/05/2010 at 19:33

Please note that terms and conditions apply.

Opechowski's theorem and commutator groups

A O Caride and S I Zanette
Centro Brasileiro de Pesquisas Físicas Rua Xavier Sigaud, 150 URCA, 22290 Rio de Janeiro, RJ, Brazil

Received 13 June 1985, in final form 2 October 1985

Abstract

This paper shows that the conditions of application of Opechowski's theorem for double groups of subgroups of $O(3)$ are directly associated to the structure of their commutator groups. Some characteristics of the structure of classes are also discussed.

1. Introduction

Forty-six years ago Opechowski (1940) defined the double groups and established his now famous theorem which describes their class structure. The theorem states that when a finite group G, a subgroup of the three-dimensional rotation group $\mathrm{SO}(3)$ has among its elements two rotations by an angle π through mutually perpendicular axes, the number of classes of its double group G^{*} is less than twice the number of classes of G.

In this paper we show that when the non-trivial element z of Z_{2} (the group of the centre of $\mathrm{SU}(2)$) belongs to the commutator group $\mathrm{G}^{* \prime}$ of G^{*}, the theorem of Opechowski applies. In this case, the order of $\mathrm{G}^{* \prime}$ is always an even number and it is isomorphic to G^{*}, the double group of the commutator group. On the other hand, we also show that if $\mathrm{G}^{* \prime} \sim \mathrm{G}^{*}$ holds, the group G contains at least two rotations in π around mutually perpendicular axes. Furthermore, if z does not belong to $\mathrm{G}^{* \prime}$, this group is of odd order and it is isomorphic to G^{\prime}.

In § 2 we define a double group of a finite subgroup of $\mathrm{SO}(3)$ by means of its relation with central extensions. In $\$ 3$ the commutator group and some of its properties are treated.

The main problem of this paper is discussed in $\S 4$, where an extension to improper groups is also considered. In §5, a simple treatment of the crystallographic point groups is presented using the results of the preceding sections.

2. The double groups

The elements of the group $S O(3)$ are specified completely by a rotation angle in the range $0 \leqslant \theta \leqslant \pi$ around a rotation axis \hat{n}. Rotations by angles $\theta>\pi$ can always be treated in the same interval using the well known relation $R(2 \pi-\theta,-\hat{n})=R(\theta, \hat{n})$.

From the irreducible representations (irreps) $D^{j}(\theta, \hat{n}), 0 \leqslant \theta \leqslant 2 \pi$, of the group $\mathrm{SU}(2)$ it is possible to obtain a set of matrices which forms an irrep of $\mathrm{SO}(3)$. Taking into account that for $\theta>\pi$ we can write $D^{j}(\theta, \hat{n})=(-1)^{2 j} D^{j}(2 \pi-\theta,-\hat{n})$, every set of
parameters (θ, \hat{n}) is associated with two matrices $D^{j}(\theta, \hat{n})$ and $(-1)^{2 j} D^{j}(\theta, \hat{n})$. For j half-integer, these matrices form the so-called double-valued representations of $\mathrm{SO}(3)$.

Let $R\left(\theta_{k l}, \hat{n}_{k}\right)$ denote the elements of a finite group $\mathrm{G}<\mathrm{SO}(3)$, where $\theta_{k l}=2 \pi l / r_{k}, l=$ $1, \ldots, r_{k}-1$, and \hat{n}_{k} is the unitary vector in the direction of the r_{k}-fold rotation axis. Opechowski (1940) has defined the double group G^{*} of a group G of order $|G|$ as the abstract group of $2|G|$ elements isomorphic to the matrix group of elements $\left\{ \pm D^{j}\left(\theta_{k l}, \hat{n}_{k}\right)\right\}$ for half-integral j.

An alternative definition is possible if we rewrite the set of matrices as $D^{j}(\theta, \hat{n}) Z_{2}, Z_{2}$ being the group with elements $I=D^{j}(0, \hat{n}),-I=D^{j}(2 \pi, \hat{n})$. It can be immediately shown that $D^{j}(\theta, \hat{n}) Z_{2}$ is a matrix group isomorphic to $\mathrm{SO}(3)$. On the other hand, as the set of D^{j} matrices forms a faithful irrep of $\mathrm{SU}(2)$ for half-integer j, the elements $D^{j}(\theta, \hat{n}) Z_{2}$ form a group also isomorphic to the factor group $\operatorname{SU}(2) / Z_{2}$ and then we have $S O(3) \sim \operatorname{SU}(2) / Z_{2}$. Therefore, since G^{*} must be a finite subgroup of $\mathrm{SU}(2)$ for $\mathrm{G}<\mathrm{SO}(3)$, the isomorphism $\mathrm{G}^{*} / \mathrm{Z}_{2} \sim \mathrm{G}$ must hold and G^{*} is a solution of the central extension of Z_{2} by G.

Calling $R\left(2 \pi l / r_{k}, \hat{n}_{k}\right)$ the elements of $\mathrm{G}<\mathrm{SO}(3)$, the double-valued representation of G for $j=\frac{1}{2}$ is given by

$$
\pm D^{1 / 2}\left(2 \pi l / r_{k}, \hat{n}_{k}\right)= \pm\left[\sigma_{0} \cos \left(\pi l / r_{k}\right)+\mathrm{i} \boldsymbol{\sigma} \cdot \hat{n} \sin \left(\pi l / r_{k}\right)\right]
$$

where σ_{0} is the 2×2 unit matrix and σ are de Pauli matrices. Since in this equation r_{k} is the order of the element $g_{k} \in \mathrm{G}$, there is only one involution within the elements of G^{*}, i.e. the element $D^{1 / 2}(2 \pi, \hat{n})=z$, which corresponds to $r_{k}=1$ in G . Caride and Zanette (1985) have shown that in order to have $H=G^{*}$ it is necessary and sufficient that H should have only one involution and $\mathrm{H} / \mathrm{Z}_{2} \sim \mathrm{G}$. From this, we can state the theorem of Opechowski in the following form. Let $(a, b) \in \mathrm{G}<\mathrm{SO}(3)$ be two rotations by π around perpendicular axes. Since z is the only element of order two in G^{*} and it is mapped onto the unit of G , the orders of the pre-images α, β and $\alpha \beta$ of a, b and $a b$ under the homomorphism $\mathrm{G}^{*} / \mathrm{Z}_{2} \sim \mathrm{G}$ may be fixed by the relations $\alpha^{2}=\beta^{2}=(\alpha \beta)^{2}=$ z. Then, z may be written as $z=\alpha^{-1} \beta^{-1} \alpha \beta$ and thus one has that α and αz (and β and βz) belong to the same class in G^{*}.

3. The commutator subgroup

Let G^{\prime} be the commutator subgroup of G. Since G / G^{\prime} is Abelian and the canonical mapping of G onto G / G^{\prime} is a homomorphism, the one-dimensional representations Γ_{n} of G are given by

$$
\Gamma_{n}(g)=\gamma_{n}\left(g \mathrm{G}^{\prime}\right)
$$

where γ_{n} is a representation of the factor group. The number of one-dimensional irreps is $\left|G / G^{\prime}\right|$.

Since G^{\prime} is self-conjugate, it consists of complete conjugacy classes C_{i} and the same is true for the set of generators of G^{\prime} consisting of the commutators ($a^{-1} b^{-1} a b$), $a, b \in \mathrm{G}$. For if an element $x=a^{-1} b^{-1} a b$ belongs to the set, its conjugate $\mathrm{gxg}^{-1}=x^{8}=$ $\left(a^{g}\right)^{-1}\left(b^{g}\right)^{-1} a^{8} b^{g}$ also belongs to it.

Let us now define the operator $S=\boldsymbol{\Sigma}_{a, b \in \mathrm{G}} a^{-1} b^{-1} a b$ in the group algebra of G. It can be written as $S=\Sigma_{i} \nu(i) S_{i}$, where S_{i} is the class sum operator $S_{i}=\Sigma_{x \in \mathcal{C}_{i}} x$ and $\nu(i)$ is the number of times the conjugacy class C_{i} is contained in the generator set of G^{\prime}. In other words, $\nu(i)$ is the number of times that an element of C_{i} can be written as a commutator.

Using the orthogonality property of the irreps of G, Burnside (1955, p 319) obtained the following expression

$$
\begin{aligned}
\nu(i) & =(1 /|G|) \sum_{j, a, b} \chi^{j}\left(a^{-1} b^{-1} a b\right) \chi^{j}\left(C_{i}\right) \\
& =|G| \sum_{j} \chi^{j}\left(C_{i}\right) / \chi^{j}(1)
\end{aligned}
$$

where $\chi^{j}(C)$ denotes the character of C in the representation j.
Applying the formula to $S^{n}=S \ldots S$ (n times) we find that the number of times an element of the class C_{i} can be written as the product of n commutators is

$$
\nu_{n}(i)=|G|^{2 n-1} \sum_{j} \chi^{j}\left(C_{i}\right) /\left[\chi^{j}(1)\right]^{2 n-i}
$$

a formula due to Van Zanten and de Vries (1973).
As it will be seen in $\S 4$, this expression is the key to obtaining the structure of the group G^{*} from the structure of $\mathrm{G}^{* \prime}$ or vice versa.

4. Results and conclusions

Let us denote by Γ_{j} the irreps of the double group G^{*} of $\mathrm{G}<\mathrm{SO}(3)$. Since z belongs to the group of the centre of G^{*} and from Schur's lemma, $\Gamma_{j}(z)=\lambda_{j} I$, where I is the unit matrix. But $z^{2}=1$, therefore $\lambda_{j}= \pm 1$. When $\lambda_{j}=+1$ we have the so-called integer irreps and when $\lambda_{j}=-1$ the half-integer irreps.

There is a very simple relation between the irreps of G^{*} and those of G. Taking into account that

$$
\chi^{j}(z)= \begin{cases}+\chi^{j}(1) & \text { for single-valued irreps } \\ -\chi^{j}(1) & \text { for double-valued irreps }\end{cases}
$$

we can now rewrite $\nu_{n}(i)$ for $n=1$ and $i=z$ as $\nu_{1}(z)=\left|G^{*}\right|$ ($2 \times$ number of irreps of G - number of irreps of G^{*}). This equation shows that every time the number of irreps of G^{*} is less than the number of irreps of G it is possible to write z as a commutator. Consequently, $z=\alpha \beta \alpha^{-1} \beta^{-1}$ for at least one pair of elements $(\alpha, \beta) \in \mathrm{G}^{*}$. Then, from the homomorphism $\mathrm{G}^{*} / \mathrm{Z}_{2} \sim \mathrm{G}$ which maps z onto the unit element of G we have that there are two elements, say $(a, b) \in \mathrm{G}$, such that $a b=b a$ and hence either a and b are two rotations around the same axis or they are two rotations of π around mutually perpendicular axes.

It will now be shown that if $\alpha \beta=\beta \alpha z$, the rotations a and b cannot be around the same axis. For if this were so, there would be an element $d \in \mathrm{G}$, such that $a=d^{k}$ and $b=d^{l}$, for some integers k, l. If δ and δz are the pre-images of the element d, the elements $\alpha=\delta^{k} z_{k}$ and $\beta=\delta^{i} z_{l}$ of G^{*}, with $\left(z_{k}, z_{l}\right) \in \mathrm{Z}_{2}$, should be such that

$$
\alpha \beta=\delta^{k} z_{k} \delta^{\prime} z_{l}=\delta^{k+1} z_{k} z_{l}=\delta^{\prime} z_{l} \delta^{k} z_{k}=\beta \alpha
$$

which is contrary to the hypothesis. Thus, a and b are two rotations of π around mutually perpendicular axes.

Since z is the only involution of G^{*} it is also the only involution of $\mathrm{G}^{* \prime}$. Then, if we arrange the elements of $\mathrm{G}^{* \prime}$ in pairs of the type ω, ω^{-1}, those two which are not among them are the unit element and z. Thus, when $z \in \mathrm{G}^{* \prime}$ we can also say that the order of $\mathrm{G}^{* \prime}$ is an even number.

Now let us suppose that $\nu_{1}(z)=0$ and $\nu_{n}(z) \neq 0$ for $n>n_{0}>1$, i.e. $z \in G^{* \prime}$ but G does not contain two rotations of π around mutually perpendicular axes. Then the number of irreps of G^{*} is twice the number of irreps of G. Moreover, since G^{*} is a central extension of Z_{2} by G it will have two conjugacy classes $C(\alpha)$ and $C(\alpha z)$ with the same number of elements as $C(a)$ of G. Then, in order to satisfy the orthogonality relations, the character table of G^{*} must have the structure of the table corresponding to the direct product $G \times Z_{2}$. This fact would double the number $\left|G^{*}\right| /\left|G^{* \prime}\right|$ of onedimensional irreps of G^{*} with respect to G. Hence, the isomorphism $G^{* *} \sim G^{\prime}$ must hold. But since $z \in G^{* \prime}$, we have $G^{* \prime} / Z_{2} \sim G^{\prime}$ and the isomorphism $G^{* \prime} \sim \mathrm{G}^{\prime *}$ must hold. This contradiction clearly shows that if $z \in \mathrm{G}^{* \prime}, \nu_{1}(z) \neq 0$ always.

When $z \notin \mathrm{G}^{* \prime}$ the theorem of Opechowski does not apply and the character table of G^{*} appears to be one corresponding to a group that can be written as a direct product. However, if the group G, a subgroup of $\mathrm{SO}(3)$, is of even order it has at least one element of order two. Hence, if α and αz are the pre-images in G^{*} of that element, they must be such that $\alpha^{2}=(\alpha z)^{2}=z$, and therefore it is not possible to write G^{*} as $G \times Z_{2}$. If G is of odd order, we can write

$$
\mathrm{G} \sim \mathrm{C}_{2 m+1}=\left\langle u \| u^{2 m+1}=1\right\rangle
$$

and therefore only in this case we can write its double group

$$
\mathrm{C}_{2 m+1}^{*}=\left\langle u \| u^{2 m+1}=z, z^{2}=1\right\rangle
$$

as a direct product given by

$$
\mathrm{C}_{2 m+1}^{*}=\left\langle u z \|(u z)^{2 m+1}=1\right\rangle \times \mathrm{Z}_{2}
$$

Let us now see how these results apply to improper subgroups of O (3).
When G is an improper group not isomorphic to a direct product of a group by the inversion, the preceding discussion is also valid since G^{*} has only the element z as involution. Improper rotations belonging to these groups which do not contain the inversion explicitly can be written in the form ig, where g is a proper rotation of even order. Thus, the order of the pre-images of ig in G^{*} is always twice the order of ig.

When G is an improper group that can be written as $\mathrm{G}=\mathrm{H} \times \mathrm{C}_{i}$ where $\mathrm{H}<\mathrm{SO}(3)$, G^{*} is isomorphic to $\mathrm{H}^{*} \times \mathrm{C}_{i}$ (Altmann 1979). In this case, the results obtained can be directly applied to H . Furthermore, although in this case G^{*} has three involutions, i , z and $\mathrm{i} z$, the results are still valid because the inversion cannot be written as a commutator and therefore z is still the unique element of order two of $\mathrm{G}^{* \prime}$.

5. Crystallographic point groups

We now show that if G^{\prime} is of even order, $\mathrm{G}^{* \prime}$ is of even order and then $z \in \mathrm{G}^{* \prime}$. This was to be expected since if the order of G^{\prime} is even there is at least one element of order two in G^{\prime} and one of its pre-images, either α or αz must belong to $\mathrm{G}^{* \prime}$. But since $\alpha^{2}=(\alpha z)^{2}=z$, it follows that $z \in \mathrm{G}^{* \prime}$ and then $\mathrm{G}^{* \prime} \sim \mathrm{G}^{\prime *}$.

Point groups with commutator groups of even order for which the Opechowski theorem applies are $\mathrm{C}_{4 n, v} \sim \mathrm{D}_{2 n, \mathrm{~d}} \sim \mathrm{D}_{4 n}, \mathrm{D}_{4 n, \mathrm{~h}} \sim \mathrm{D}_{4 n} \times \mathrm{C}_{i}, \mathrm{~T}, \mathrm{~T}_{\mathrm{h}}=\mathrm{T} \times \mathrm{C}_{i}, \mathrm{O}_{\mathrm{h}}=\mathrm{O} \times \mathrm{C}_{\mathrm{i}}$, $\mathrm{T}_{\mathrm{d}} \sim \mathrm{O}, \mathrm{Y}$ and $\mathrm{Y}_{\mathrm{h}}=\mathrm{Y} \times \mathrm{C}_{\mathrm{i}}$.

When the commutator group is of odd order we have two alternatives: either $\mathrm{G}^{* \prime} \sim \mathrm{G}^{\prime}$ or $\mathrm{G}^{* \prime} \sim \mathrm{G}^{\prime *}$. The first case includes the cyclic groups $\mathrm{C}_{n}, \mathrm{C}_{n, \mathrm{~h}}$ and $\mathrm{S}_{2 n}$, since the central extensions of Z_{2} by them are also cyclic and consequently $G^{* \prime} \sim G^{\prime} \sim C_{1}$.

Let us now examine the remaining crystallographic point groups which are isomorphic to D_{n} or to $D_{n} \times C_{i}$. The dihedral groups can be presented (Suzuki 1982) as

$$
\mathrm{D}_{n}=\left\langle\rho, \varepsilon \| \rho^{n}=\varepsilon^{2}=(\rho \varepsilon)^{2}=1\right\rangle
$$

and their double groups (Opechowski 1940) as

$$
\mathrm{D}_{n}^{*}=\left\langle u, v \| u^{n}=v^{2}=(u v)^{2}=z, z^{2}=1\right\rangle
$$

where $u=(\rho, 1)$ and $v=(\varepsilon, 1)$. Thus, the corresponding commutator groups are

$$
\mathrm{D}_{n}^{\prime}=\left\langle\rho^{2} \| \rho^{n}=1\right\rangle \quad \mathrm{D}_{n}^{* \prime}=\left\langle u^{2} \| u^{n}=z, z^{2}=1\right\rangle
$$

Therefore we see that if $n=2 m+1$,

$$
\mathrm{D}_{2 m+1}^{\prime}=\left\langle\rho \|(\rho)^{2 m+1}=1\right\rangle \quad \mathrm{D}_{2 m+1}^{* \prime}=\left\langle u^{2} \|\left(u^{2}\right)^{2 m+1}=1\right\rangle
$$

and consequently the commutator groups of the double groups of $\mathrm{C}_{2 n+1, \mathrm{v}} \sim \mathrm{D}_{2 n+1}$ and $\mathrm{D}_{2 n+1, \mathrm{~d}} \sim \mathrm{D}_{2 n+1} \times \mathrm{C}_{i}$ are isomorphic to their commutator groups, i.e. for these groups $\mathrm{G}^{* \prime} \sim \mathrm{G}^{\prime}$.

When $n=4 m+2$ we have

$$
\mathrm{D}_{4 m+2}^{* \prime}=\left\langle u^{2} \|\left(u^{2}\right)^{2 m+1}=z, z^{2}=1\right\rangle .
$$

Since $z \in \mathrm{D}_{4 m+2}^{* \prime}$ the double groups of the point groups $\mathrm{C}_{4 n+2, \mathrm{v}} \sim \mathrm{D}_{2 n+1, \mathrm{~h}} \sim \mathrm{D}_{4 n+2}$ and $D_{4 n+2, h} \sim D_{4 n+2} \times C_{i}$ will have a number of classes which is less than twice the number of classes of its corresponding groups, and $G^{* \prime} \sim G^{\prime *}$.

Finally, we can say that in order to have a character table for G^{*} of the type corresponding to a direct product of G by Z_{2} it is necessary and sufficient that $\left|G^{*} / G^{* \prime}\right|=2\left|G / G^{\prime}\right|$. This is so because $\nu_{n}(z)$ is by definition a positive function. Moreover, since the unit element can always be written as a commutator, ν_{n} is also a non-decreasing function of n, i.e. $\nu_{n}(z) \leqslant \nu_{n+1}(z)$ and since $\lim _{n \rightarrow \infty} \nu_{n}(z)=$ $\left|G^{*}\right|^{2 n+1}\left(2\left|G / G^{\prime}\right|-\left|G^{*} / G^{* \prime}\right|\right)$ we see that if $\left|G^{*} / G^{* \prime}\right| \neq 2\left|G / G^{\prime}\right|, \nu_{n}(z) \neq 0$.

References

Altmann S L 1979 Mol. Phys. 382
Burnside W 1955 Theory of Groups of Finite Order (New York: Dover) 2nd edn
Caride A O and Zanette S I 1985 Mol. Phys. 5679
Opechowski W 1940 Physica 7552
Suzuki M 1982 Group Theory I (Berlin: Springer)
Van Zanten A J and de Vries E 1973 J. Math. Phys. 141423

