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Opechowski’s theorem and commutator groups 

A 0 Caride and S I Zanette 
Centro Brasileiro de Pesquisas Fisicas Rua Xavier Sigaud, 150 URCA, 22290 Rio de 
Janeiro, RI, Brazil 

Received 13 June 1985, in final form 2 October 1985 

Abstract. This paper shows that the conditions of application of Opechowski’s theorem 
for double groups of subgroups of O(3)  are directly associated to the structure of their 
commutator groups. Some characteristics of the structure of classes are also discussed. 

1. Introduction 

Forty-six years ago Opechowski (1940) defined the double groups and established his 
now famous theorem which describes their class structure. The theorem states that 
when a finite group G, a subgroup of the three-dimensional rotation group SO(3) has 
among its elements two rotations by an angle 7r through mutually perpendicular axes, 
the number of classes of its double group G* is less than twice the number of classes 
of G. 

In this paper we show that when the non-trivial element z of Z2 (the group of the 
centre of SU(2)) belongs to the commutator group G*’ of G*, the theorem of 
Opechowski applies. In this case, the order of G*’ is always an even number and it 
is isomorphic to G’*, the double group of the commutator group. On the other hand, 
we also show that if G*’ - G’* holds, the group G contains at least two rotations in 7~ 
around mutually perpendicular axes. Furthermore, if z does not belong to G*’, this 
group is of odd order and it is isomorphic to G’. 

In 0 2  we define a double group of a finite subgroup of SO(3) by means of its 
relation with central extensions. In § 3 the commutator group and some of its properties 
are treated. 

The main problem of this paper is discussed in § 4, where an extension to improper 
groups is also considered. In § 5 ,  a simple treatment of the crystallographic point 
groups is presented using the results of the preceding sections. 

2. The double groups 

The elements of the group SO(3) are specified completely by a rotation angle in the 
range OG 8 S 7r around a rotation axis 6. Rotations by angles 8 > 7~ can alwiys be 
treated in the same interval using the well known relation R(27r - 8, -fi) = R( 8, fi). 

From the irreducible representations (irreps) D’( 8, fi), 0 S 8 s 2 ~ ,  of the group 
SU(2) it is possible to obtain a set of matrices which forms an irrep of SO(3). Taking 
into account that for 8 > 7r we can write D’( 8, fi) = (-1)2JD’(27r - 8, --fi), every set of 
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parameters (8, i?) is associated with two matrices LY(8 ,  i?) and ( - l ) 2 J L Y ( 8 ,  i?). For j 
half-integer, these matrices form the so-called double-valued representations of SO(3).  

= 2 d /  rk, 1 = 
1, . . . , rk - 1, and i?k is the unitary vector in the direction of the rk-fold rotation axis. 
Opechowski (1940) has defined the double group G* of a group G of order /GI as 
the abstract group of 2(GI elements isomorphic to the matrix group of elements 
{a'(&, Ak)} for half-integral j .  

An alternative definition is possible if we rewrite the set of matrices as LY( 8, i?)Z2, Z2 
being the group with elements I = LY(0, i?), -I = LY(27r, i?). It can be immediately 
shown that LY(8 ,  i?)Z2 is a matrix group isomorphic to SO(3). On the other hand, as 
the set of LY matrices forms a faithful irrep of SU(2) for half-integer j ,  the elements 
D(8, 6)Z2 form a group also isomorphic to the factor group SU(2)/Z2 and then we 
have SO(3) - SU(2)/Zz. Therefore, since G* must be a finite subgroup of SU(2) for 
G < S0(3 ) ,  the isomorphism G*/Zz - G must hold and G* is a solution of the central 
extension of Zz by G. 

Calling R(2d / rk ,  i?k) the elements of G < S0(3 ) ,  the double-valued representation 
of G for j = is given by 

Let R( i?,) denote the elements of a finite group G < S0(3 ) ,  where 

*D"2(2T1/rk, i?k) = *[a, COS( rI/rk) +iU ' i? Sin( Tl/rk)] 

where go is the 2x2 unit matrix and U are de Pauli matrices. Since in this equation 
rk is the order of the element gk E G, there is only one involution within the elements 
of G*, i.e. the element 0''2(27r, i?) = z, which corresponds to rk = 1 in G. Caride and 
Zanette (1985) have shown that in order to have H = G* it is necessary and sufficient 
that H should have only one involution and H/Zz - G. From this, we can state the 
theorem of Opechowski in the following form. Let (a ,  b )  E G < SO(3) be two rotations 
by 7~ around perpendicular axes. Since z is the only element of order two in G* and 
it is mapped onto the unit of G, the orders of the pre-images a, p and ap of a, b and 
ab under the homomorphism G*/Z2 - G may be fixed by the relations a' = p' = (ap)' = 
z. Then, z may be written as z = a- 'P- 'ap and thus one has that a and a z  (and p 
and pz) belong to the same class in G*. 

3. The commutator subgroup 

Let G' be the commutator subgroup of G. Since G/G' is Abelian and the canonical 
mapping of G onto G/G' is a homomorphism, the one-dimensional representations 
r, of G are given by 

r,(g) = y,(gG') 
where 7, is a representation of the factor group. The number of one-dimensional 
irreps is IG/ G'I. 

Since G' is self-conjugate, it consists of complete conjugacy classes Ci and the 
same is true for the set of generators of G' consisting of the commutators (a - 'b - 'ab ) ,  
a, b E G. For if an element x = a-'b- 'ab belongs to the set, its conjugate gxg-' = xg = 
( a g ) - ' ( b g ) - ' a g b g  also belongs to it. 

Let us now define the operator S = X'a,6EG a-'b-'ab in the group algebra of G. It 
can be written as S = X i  v( i )S i ,  where Si is the class sum operator Si = XxSc, x and v( i )  
is the number of times the conjugacy class Ci is contained in the generator set of G'. 
In other words, v(i) is the number of times that an element of C, can be written as a 
commutator. 
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Using the orthogonality property of the irreps of G, Bumside (1955, p 319) obtained 
the following expression 

4 i )  = (1/IGI) c x'(a- 'b- 'ab)x'(C,)  
l.%b 

= IGI CX'(CJlx ' (1)  
1 

where $( C)  denotes the character of C in the representation j .  

an element of the class C, can be written as the product of n commutators is 
Applying the formula to S" = S .  . . S ( n  times) we find that the number of times 

v,(i) = (G(2"-' c ~ ' ( C , ) / [ X ' ( ~ ) I ~ " - ~  
J 

a formula due to Van Zanten and de Vries (1973). 

group G* from the structure of G*' or vice versa. 
As it will be seen in § 4, this expression is the key to obtaining the structure of the 

4. Results and conclusions 

Let us denote by r, the irreps of the double group G* of G < SO(3). Since z belongs 
to the group of the centre of G* and from Schur's lemma, T , ( z )  = AII, where I is the 
unit matrix. But z2  = 1, therefore AI = * l .  When A, = +1 we have the so-called integer 
irreps and when Aj  = - 1 the half-integer irreps. 

There is a very simple relation between the irreps of G* and those of G. Taking 
into account that 

for single-valued irreps 
X ' ( Z )  = { 

-$(I )  for double-valued irreps 

we can now rewrite v,(i) for n = 1 and i = z as v l ( z )  = IG*l ( 2  x number of irreps of 
G - number of irreps of G*). This equation shows that every time the number of irreps 
of G* is less than the number of irreps of G it is possible to write z as a commutator. 
Consequently, z = apa-lp-' for at least one pair of elements (a, p )  E G*. Then, from 
the homomorphism G*/Z, - G which maps z onto the unit element of G we have that 
there are two elements, say ( a ,  b )  E G, such that ab = ba and hence either a and b are 
two rotations around the same axis or they are two rotations of T around mutually 
perpendicular axes. 

It will now be shown that if ap = paz,  the rotations a and b cannot be around the 
same axis. For if this were so, there would be an element d E G, such that a = d k  and 
b = d',  for some integers k, 1. I f  S and Sz are the pre-images of the element d, the 
elements a = Skzk and p = S1zl of G*, with (zk, z , )  E Z2, should be such that 

1 k  = SkZk8'z/ = Sk+'Zkz/ = 6 z/6 zk = pa 

which is contrary to the hypothesis. Thus, a and b are two rotations of T around 
mutually perpendicular axes. 

Since z is the only involution of G* it is also the only involution of G*'. Then, 
if we arrange the elements of G*' in pairs of the type w, U - ' ,  those two which are not 
among them are the unit element and z. Thus, when z E G*' we can also say that the 
order of G*' is an even number. 



1520 A 0 Caride and S I Zanette 

Now let us suppose that v,(z)=O and v,,(z)#O for n >  no> 1, i.e. ZEG*’ but G 
does not contain two rotations of T around mutually perpendicular axes. Then the 
number of irreps of G* is twice the number of irreps of G. Moreover, since G* is a 
central extension of Z2 by G it will have two conjugacy classes C ( a )  and C ( a z )  with 
the same number of elements as C( a )  of G. Then, in order to satisfy the orthogonality 
relations, the character table of G* must have the structure of the table corresponding 
to the direct product GxZ, .  This fact would double the number IG*I/IG*’I of one- 
dimensional irreps of G* with respect to G. Hence, the isomorphism G’*-G’ must 
hold. But since ZEG*’, we have G*‘/Z2-G’ and the isomorphism G*’-G’* must 
hold. This contradiction clearly shows that if z E G*’, v l ( z )  # 0 always. 

When z G*’ the theorem of Opechowski does not apply and the character table 
of G* appears to be one corresponding to a group that can be written as a direct 
product. However, if the group G,  a subgroup of S0(3 ) ,  is of even order it has at 
least one element of order two. Hence, if a and az are the pre-images in G* of that 
element, they must be such that a2  = (az)’= z, and therefore it is not possible to write 
G* as G x Z 2 .  If G is of odd order, we can write 

1) 
2 m + 1 =  G-Gm+i = (uIIu 

and therefore only in this case we can write its double group 

c,*,+, = (U 1 1  U Z m + l  = z, 2’ = 1) 

c;m+l = ( U Z I I ( U Z ) 2 m + l =  1) x 2 2 .  

as a direct product given by 

Let us now see how these results apply to improper subgroups of O(3). 
When G is an improper group not isomorphic to a direct product of a group by 

the inversion, the preceding discussion is also valid since G* has only the element z 
as involution. Improper rotations belonging to these groups which do not contain the 
inversion explicitly can be written in the form ig, where g is a proper rotation of even 
order. Thus, the order of the pre-images of ig in G* is always twice the order of ig. 

When G is an improper group that can be written as G = H x Ci where H < S0(3 ) ,  
G* is isomorphic to H* x Ci  (Altmann 1979). In this case, the results obtained can be 
directly applied to H. Furthermore, although in this case G* has three involutions, i, 
z and iz, the results are still valid because the inversion cannot be written as a 
commutator and therefore z is still the unique element of order two of G*’. 

5. Crystallographic point groups 

We now show that if G’ is of even order, G*’ is of even order and then z E G*’. This 
was to be expected since if the order of G’ is even there is at least one element of 
order two in G’ and one of its pre-images, either a or az must belong to G*’. But 
since a* = (az)’ = z, it follows that z E G*’ and then G*’- G’*. 

Point groups with commutator groups of even order for which the Opechowski 
theorem applies are C4n,v - D2n,d - D4,,, D4n,h - D4,, x Ci, T, Th = T x Ci, Oh = 0 x Ci, 

When the commutator group is of odd order we have two alternatives: either 
G*’- G’ or G*‘- G‘*. The first case includes the cyclic groups C,, Cn,h and S2,,, since 
the central extensions of Z2 by them are also cyclic and consequently G*’ - G’ - C,. 

Td-0, Y and Yh=YXcj. 
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Let us now examine the remaining crystallographic point groups which are isomor- 
phic to D, or to D, x Ci. The dihedral groups can be presented (Suzuki 1982) as 

D, = (p,  &llpfl = = ( P E ) ’  = 1)  

and their double groups (Opechowski 1940) as 

Df = (U, t)lIun = u2 = z, z’= 1)  

where u = ( p, 1 )  and U = ( E ,  1 ) .  Thus, the corresponding commutator groups are 

Dh = (p211pn = 1)  D f ’ = ( u 2 ~ ~ ~ ’ ’ = z , z 2 = 1 ) .  

Therefore we see that if n = 2m + 1 ,  

DSm+l= ( P  ll(P) 2m+1= 1)  DTA+l = (U’[/( u~)~“‘+’ = 1 )  

and consequently the commutator groups of the double groups of C2n+l,v- DZflfl and 
D2n+l,d- D2n+l x Ci are isomorphic to their commutator groups, i.e. for these groups 
G*’ - G‘. 

When n = 4 m  + 2 we have 

2, z2  = 1). 2 2 m + l =  D % + r = ( ~ ~ 1 1 ( ~  ) 

Since z E DfA+2 the double groups of the point groups C4n+2,v - D2n+l,h - D4n+2 and 
D4,,+2,h - D4,+2 x Ci will have a number of classes which is less than twice the number 
of classes of its corresponding groups, and G*’ - G’*. 

Finally, we can say that in order to have a character table for G* of the type 
corresponding to a direct product of G by Z 2  it is necessary and sufficient that 
[ G * / G * ’ l =  21G/ G’l. This is so because v , ( z )  is by definition a positive function. 
Moreover, since the unit element can always be written as a commutator, v, is also a 
non-decreasing function of n, i.e. v , ( z )  s V ” + ~ ( Z )  and since limn-rco v , ( z )  = 
IG*)2n+1(21G/G’I-(G*/G*’l) we see that if IG*/G*’ l#21G/G’ / ,  v , ( z )  # 0. 
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